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Background/Philosophy
– Elevated Material Behavior
– Impact on Analysis
– Multiscale Framework/Vision

Recent Advances
– Theoretical Modeling/Testing
– Numerical Integration
– Material Characterization
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Typical High Temperature Applications Typical High Temperature Applications 
Demand High Performance MaterialsDemand High Performance Materials
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• Complex Thermomechanical Loading
• Complex Material response requires Time-Dependent/Hereditary Models: 

Viscoelastic/Viscoplastic
• Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety 

of material systems
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Important Phenomenological Observations of Behavior of Important Phenomenological Observations of Behavior of 
Metals at High Homologous Temperatures (T/TMetals at High Homologous Temperatures (T/Tmm>0.3)>0.3)

Creep-Plasticity Interactions

Classic Reason for Introducing 
Unified Viscoplastic Models 

(e.g., GVIPS Class)
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Important Phenomenological Observations of Behavior of Important Phenomenological Observations of Behavior of 
Metals at High Homologous Temperatures (T/TMetals at High Homologous Temperatures (T/Tmm>0.3)>0.3)

Cyclic BehaviorCyclic Behavior
Stress-controlled

Ratchetting 
Behavior

Shakedown
BehaviorStrain-controlled



Material Behavior Can Significantly Impact Structural 
Response (e.g. Recovery Mechanisms)

Dynamic Recovery Thermal Recovery

Applied Compressive Stress/Euler Stress = 0.095

Normalized Initial imperfection – 0.01

Arnold et al.,   ‘‘ Creep Buckling of a 
Cylindrical Shell Under Variable 
Loading”, Jnl of Eng Mech., ASCE, Vol. 
115, No. 5, pp. 1054-1074, 1989. 

Decrease critical buckling time by 30-40% with history

Normalized radial displacement versus normalized time for variable loading 
histories given in inserts
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Unified Viscoplastic Models Capture Deformation Unified Viscoplastic Models Capture Deformation 
Response in Rocket Engine Nozzle LinersResponse in Rocket Engine Nozzle Liners

Experiment (GRC)
SSME Nozzle Liner Geometry

Prediction
Classical     Unified
(Lockheed)        (GRC)• Severe thermomechanical loading conditions result in 

irreversible strains

• Unified viscoplastic models successfully predict the 
experimentally observed deformation trends

Arya and Arnold, AIAA, Vol 30, No. 3, 1992 



Multiscale Functional Framework for Deformation and Life Multiscale Functional Framework for Deformation and Life 
ModelingModeling

LIFE
Life Prediction Branch

Structures Division GRC 
SMA 7/97

Characterization/Validation

Experimentation

Data Reduction

Local
(Coupon)

Test Methods

COMPARE
(Auto Parameter Est)

Deformation
Damage

Global
(Component)

Micromechanics
Homogenization

Mechanism
Evolutionary Laws

Mechanism
Evolutionary Laws

Hereditary Deformation
Modeling

Continuum Damage 
Mechanics

Subdomain Solution Schemes
for 

Nonhomogenous/Localized Fields

Structural Failure Criteria

Local  Scale

Meso Scale

Global
•NDE

•Sensors
•Analysis

X

U Conditions

Structural Analysis

Global Scale

Detection Techniques

Local
NDE Techniques

Ultrasonic
X-Ray

CT
Eddy Current

…….

Component Validation
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CONSTITUTIVE MODELING 
Structural Mechanics Problem Need to concurrently address

three important and related areas:
i) mathematical formulation for the 

accurate multiaxial representation
GVIPS ClassesGVIPS Classes

ii) algorithmic developments for the 
updating (integrating) of external and 
internal state variables -FEA User 
Definable Subroutines

iii) parameter estimation -COMPARE

Knowledge of the material’s life and constitutive 
behavior is a prerequisite for assessment of 

component performance/reliability

This approach allows one to overcome the two major obstacles for practical 
utilization of sophisticated time-dependent (hereditary) models:

1)  lack of efficient and robust integration algorithms -- FEA Linkage issues
2)  difficulties associated with characterization of large number of material 

parameters and appropriate experimental “data content” - COMPARE & 
sensitivities
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The Desired Vision For Design and AnalysisThe Desired Vision For Design and Analysis

ABAQUS

Source Code
Object Code

Large Scale Implementation

• Integration scheme

• Multimechanism Constitutive 
Relation

Implicit GVIPS

UMAT

COMPARE

Mathematical CharacterizationMathematical Characterization
OfOf

Material BehaviorMaterial Behavior

Automatically write required  Automatically write required  
input informationinput information

FEA Analysis of 
component

www.mdmc.net
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Thermomechanical Testing in Support of Thermomechanical Testing in Support of 
Constitutive Model DevelopmentConstitutive Model Development

Provide sufficient database to
1) determine the specific functional forms

2) quantify the associated material parameters

so as to represent a particular material 
over a given range of conditions

Characterization
Tests

Exploratory
Tests

Validation
Tests

• Identify Fundamental Def & Damage 
Mechanisms

• Illuminate Salient Material Response Features

• Isotropic/kinematic Hardening

• Time Dependent/ Time-Independent

• Sensitivity Hydrostatic Stress Field

• Isotropic/Anisotropy  Material Symmetry

• Guide Mathematical Structure of Model

• Guides Specimen design/ Test Method 
Development

Constitutive
Model

Deformation & Damage

• Often structural in nature

• Provide prototypical response 
data which is to be compared 
with model predictions

• Ideally provide feedback for 
subsequent model refinement



Experimental ObservationsExperimental Observations
•Reversibility

rate-dependent instantaneous stiffness
transient creep/relaxation
limit equilibrium state

•Theoretical demarcation (Exp. Verified)
•Irreversibility

strain-stress dependent
nonlinearity
strain rate dependence
creep with steady-state
relaxation with finite residual state
creep/plasticity interaction
thermal recovery
nonlinear kinematic/isotropic hardening

•Anelastic recovery during reversal in both 
quasilinear and fully developed inelastic 
regions
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Experiments Indicated Existence of Reversible Experiments Indicated Existence of Reversible 
and Irreversible Threshold Surfaceand Irreversible Threshold Surface

Experimentally verified for both 
TIMETAL 21S and Ti-6-4

GRCop-84 doesn’t appear to 
exhibit strong viscoelastic response
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Theoretical/Computational MotivationTheoretical/Computational Motivation
In view of  four + decades of active research in the area of inelastic behavior 
modeling, the need still exists for an:

Accurate representation of material response details over an 
extensive domain of time, stress, temperature, loading conditions ...

Assessment
Technical  Practical Implication  

Non-associative
    - Nonsymmetric Tangent Stiffness

    - Coupled system of Stiff Diff. Eq.

⇒ Non-uniqueness of solution
⇒ Implementation into large scale FEA codes

problematic
⇒ Difficult to integrate

Numerous nonphysical material parameters ⇒ Requires expertise to characterize model

Single-mechanism models ⇒ Qualitatively capable, yet quantitatively
limited in response spectrum
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Utilize Concept of Thermodynamic Internal State Utilize Concept of Thermodynamic Internal State 
Variables to Obtain Constitutive EquationsVariables to Obtain Constitutive Equations

Evolution of 
Conjugates

“Displacement-Like”

Dissipation Potentials
Complementary Type

Ω = Ω (variables)

Evolution of 
Variables

“Force-Like”

Dissipation Potentials
Free Energy Type

Ψ = Ψ (conjugates)

Equations of State
Thermodynamic Potentials
(e.g., Gibb’s, Helmholtz’s)

Thermodynamic
Conjugates

“Displacement-Like”

Thermodynamic
Variables

“Force-Like”

Compliance
Operators

Missing Link in past potential 
based theories
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Advantages and Attributes of Potential FormulationAdvantages and Attributes of Potential Formulation

• Provides a consistent framework for deformation and 
damage modeling

Nonisothermal and/or anisotropic extension straight forward
Nonproportional loading histories automatic
Automatic satisfaction of the Dissipation Inequity of 
Thermodynamics

• Eliminates the “ad-hoc” nature of model development
• Provides sufficiently general variational structure. 
• Constitutes cornerstone of regularity and bounding (or 

limit) theorems in plasticity and viscoplasticity.
• Lends itself to robust numerical implementation
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Physical Mechanisms Underlying The
Partitioning of Energy : Complementary Type

Equations of State

Φ = ΦR + ΦIR

(e,εΙ); γ; (εve,p)
“Displacement-Like”

Evolution of

εΙ; γ; p
“Displacement-Like”

Evolution of
σ; α; q

“Force-Like”

Total = Stored + Dissipated
σe =    Φ    +      Ω

Stored (Φ) = Reversible + Irreversible
Lattice Distortion Dislocation Pile-up

Reflects change in microstructure

Dissipation (Ω) = Reversible + Irreversible
Dislocation bowing

Deformation & 
Thermally driven 

Mechanism

Reflects mobility/rate of  evolution in 
microstructure

Irreversible = Ω1 (deformation) + Ω2 (diffusional; mass/vacancy)
Glide/plastic Slip • Thermal recovery

• Dislocation/boundary interaction
• Formation of cell structure

αα ∂∂
Φ∂2

σ; α; q
“Force-Like”

Ω = ΩR + ΩIR
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General Multimechanism Hereditary 
Behavior Model of the GVIPS Class

Reversible

Irreversible



Glenn Research Center

Specific Choice of Energy Potentials and Material 
Functional Forms

Specific Form of Model
Stored Energy

Dissipation
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Results Illustrating 
Recent Improvements 
Made to the Hardening 

Functional Form in GVIPS 
Model

Demonstrates how scale-abuse can be used

Previous Non-saturating
g(G)=H / Gß

Current Saturating Form

g(G)=H(1-G)ß

G = [½(α ij α ij)/ κ2
(b)]0.5

TIMETAL 21S: 650oC
Strain Controlled Tensile
Single Mechanism
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Comparison of Specific Hardening Comparison of Specific Hardening 
Forms Under Cyclic LoadingForms Under Cyclic Loading

Non-Saturating

Saturating

TIMETAL 21S: 650oC      Strain Controlled 
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New Saturating Form Does Not Adversely Impact 
Ability to Represent Creep/Relaxation

• But need at least two
mechanisms to capture both 
creep and relaxation well

Creep

Relaxation
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Robust Integration Scheme Key For Robust Integration Scheme Key For 
Efficient Inelastic Finite Element AnalysisEfficient Inelastic Finite Element Analysis

Advantages of  Implementation
– Directly applicable for 3-D and sub-space 

loading(plane strain, axisymmetric, etc)
– Generalized Material Symmetry Operators 

(which influence flow, hardening, 
recovery, relaxation spectrum, etc.)

– Efficiency (through explicit algorithmic 
tangent stiffness)

– Robustness (through “slack” line search)

Common approaches for integration of 
rate equations:

1) Non-Iterative: explicit; semi-implicit
No local iterations less overhead
stability problems

2) Iterative: fully-implicit
Requires local iterations additional 

overhead
Unconditional stability
Consistent Tangent Stiffness 

Quadratic Convergence of global 
Newton-Raphson Iterations

Selected:
Backward Euler with Line Search
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Results Illustrating the Efficiency of The Numerical Results Illustrating the Efficiency of The Numerical 
Implementation of GVIPSImplementation of GVIPS

Backward Euler with Line Search

**Explicit Failed 

Under nonproportional loading 
conditions

Under cyclic conditions
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Key to Accurate Characterization of GVIPS Key to Accurate Characterization of GVIPS 
Involves Sufficient “Data Content”Involves Sufficient “Data Content”

Viscoplastic Material Parameters
– Flow κ, µ, n 

– Hardening  Hb, κb and β, 

– Recovery:  Rb and mb

3 + 5N irreversible material constants

E

Hb

κ,µ Rα

Temperature

Pa
ra

m
et

er
s

Viscoelastic Material Parameters

2+2M number, i.e., Es, ν, (M(a) , ρ(a))

Quality vs. Quantity

Strain controlled Tensile Tests (multiple rates)
Creep Test (Monotonic and/or step)
Relaxation (Monotonic and/or step)
Cyclic Tests (Fully reversed, ratcheting)
Biaxial Tests (tensile, creep, relaxation, cyclic)

Desire a mixture (rather than 

numerous of one type) of tests at 
numerous  temperatures

Types of Experimental Tests

κb
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COMPARE CORECOMPARE CORE

Direct Differentiation Approach

COMPARE
(driver)

Sequential Quadratic 
Programming (SQP)

Sensitivity

Optimizer Analyzer

Implicit Integration 
for Primal Analysis

• Identify active/passive variables for a test

• Scaling design variables and objective function

• Formulating a single design optimization problem
weighted objective function.
Constraints
sensitivities

• Final Optimum Material Parameters
• Combined & Individual Error FunctionsResults
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Comprehensive Characterization of
The Deformation Response of TIMETAL21S

Wide Range of Application
Stress:  1 60 Ksi
Time: 2 90000 sec
Temp: 650 C
Loading Rates: 10-2 10-10

“DATA “DATA 
CONTENT”CONTENT”

ISIS
HUGE HUGE 
ISSUEISSUE
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Characterization of IN738LC @ 850 0C 
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Final characterized parameters using four Viscoplastic  
mechanisms for IN738LC @8500 C 
Material 

Parameter
Units Value Material  

Parameter
Units Value 

 E  MPa 1.5x105 β1 - 1 (6)* 

ν - 0.33 β2 - 1 (6)* 
κ MPa 0.1 β3 - 1 (6)* 
κ1 MPa 61.43 β4 - 1 (6)* 
κ2 MPa 64.37 R1 1/s 1.0x10-21 

κ3 MPa 62.30 R2 1/s 1.0x10-21 

κ4 MPa 75.08 R3 1/s 1.0x10-21 
n - 1.486 R4 1/s 1.0x10-21 
µ MPa -s 3.79x1014 H1 MPa 4.6x104 

m1 - 0.001 H2 MPa 5.13x104 

m2 - 0.001 H3 MPa 8.33x107 
m3 - 0.001 H4 MPa 9.458x107 
m4 - 0.001    

* the value between parentheses was determined in the FE simulation of the 
experiment 

Elastic + 4 Viscoplastic Mechanisms
Loading
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Correlation of GRCopCorrelation of GRCop--84 Utilizing 84 Utilizing 
Multimechanism GVIPS ModelMultimechanism GVIPS Model
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Structural Verification TestingStructural Verification Testing
• Ideally should provide 

feedback for subsequent 
model refinement

• Provide prototypical 
response data which is 
to be compared with 
model predictions

Consequently:
• Need accurate temperature, strain and load information at a 

variety of locations  - required for any true validation
• Number of cycles to failure (alone) not enough 
• Instrumentation incredibly challenging (sever environment)

Glenn Research Center
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Summary Summary of Advances in Material Modeling of Advances in Material Modeling 
(Synergistic Technology) (Synergistic Technology) 

Generalized, Fully Associative, 
Multimechanism, Viscoelastoplastic 
Model Available
– Reversible/Irreversible Regimes
– Spanning wide time, stress, 

temperature spectrum
– Nonlinear Hardening with 

Saturation 
– Ability to capture ratcheting
– Stiffness and/or Strength Reduction

Automated Material Model 
Characterization
– via COMPARE
– Materials thus far:

Ni based; Cu based; Ti
MMC and PMC

Implicit Integration Algorithms
– Directly applicable for 3D/sub-space 

loading
– Generalized Material Symmetry 

Operators (which influence flow, 
hardening, recovery, relaxation 
spectrum, etc.)

– Efficiency (through explicit 
algorithmic tangent stiffness) 

– Robustness (through “slack” line 
search)

Now Commercially Available
– COMPARE
– GVIPS – via UMATs
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Experiments

Finite 
Element 
Analysis

User 
Definable

Material 
Model
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37448.29514 1.320609
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37462.34931 1.089025
37464.27778 1.13265
37467.28403 1.096359
37469.27153 1.064865
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Data

F U

σ ε
GVIPS

GVIPS

Open Channel SoftwareOpen Channel Software

www.openchannelfoundation.org

Multiple 
Experiments 
produce data

COMPARE fits the 
GVIPS material 
parameters to 
experimental data 
within minutes.

The resulting UMAT can 
be immediately 
accessed by the Finite 
Element Analysis
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Future WorkFuture Work
• Extend formulation to account for 

Coupled Nonisothermal Issues
Probabilistic Material Behavior

• Characterize additional material systems

• Verify under prototypical loading histories

• Implement softening (damage) mechanisms into 
COMPARE – theory complete

Characterize strength/stiffness reduction parameters to 
account for softening effects
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Thank YouThank You

Questions?Questions?
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